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Different kinds of cereal flours submitted to various technological treatments were classified on the
basis of their mid-infrared spectra by pattern recognition techniques. Classification in the wavelet
domain was achieved by using the wavelet packet transform for efficient pattern recognition (WPTER)
algorithm, which allowed singling out the most discriminant spectral regions. Principal component
analysis (PCA) on the selected features showed an effective clustering of the analyzed flours.
Satisfactory classification models were obtained both on training and test samples. Furthermore,
mixtures of varying composition of the studied flours were distributed in the PCA space according to
their composition.
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INTRODUCTION

The request for rapid, nondestructive, cheap, and accurate
methods for food analysis has led to an increasing use of infrared
spectroscopy in food analysis (1, 2). Fourier transform infrared
(FT-IR) spectroscopy, in fact, is a flexible method that can
supply qualitative and, in some cases, quantitative information
with minimal or no sample preparation. Moreover, it is rapid,
sensitive, and relatively low cost (3). Since the late 1970s, near
infrared (NIR) spectroscopy coupled with chemometrics has
been successfully used to characterize cereal samples. Multi-
variate calibration on NIR spectra is now commonly used for
routine analysis to determine protein, moisture, gluten, fiber
content, and hardness in flours (4-6). Until now, for calibration
purposes, the NIR region has been preferred with respect to
the medium infrared (MIR) region because of its richness in
absorption bands of different intensity bringing the same
chemical information. However, recent studies (7, 8) have shown
that the MIR region can be used to determine the composition
of ground cereals with an accuracy equal to or better than that
obtained by NIR. MIR competitiveness is to be fundamentally
ascribed to the possibility of easier spectra interpretation. The
MIR region from 4000 to 400 cm-1 is the most widely used
range for pure organic compounds identification, but recently
the applications of this technique as a nondestructive tool for

characterizing both raw materials and food matrixes composition
has been growing.

IR spectroscopy bears information on the chemical composi-
tion and physical state of the whole sample, but it is not a
selective method. Therefore, to extract useful information from
the whole spectra, multivariate data analysis is needed. Different
multivariate strategies may be used to accomplish classification
tasks on the basis of infrared spectra, but, in general, given the
high-dimensionality and the highly correlated nature of the
spectral variables, often coupled with a low number of samples,
data reduction is almost a mandatory preliminary step. To this
aim, two approaches have proven to be successful (9): (i)
projection of the data onto a smaller subspace, e.g., by principal
component analysis (PCA) (10); and (ii) selection of the most
significant features (11). The algorithm employed in this study,
namely, the wavelet packet transform for efficient pattern
recognition (WPTER) algorithm (12), uses both the approaches,
decomposing the whole IR spectra into the wavelet packet
domain (13). There are many advantages when working with
wavelet coefficients instead of using the original percent
transmittance values in the wavenumber domain. First of all,
the continuous nature of the spectral variables is directly taken
into account, thus considering both shape and local aspects of
the signal. Moreover, the stochastic (noisy) component in the
signals is efficiently disjointed by the deterministic (informative)
one. In classification tasks, this allows one to derive models
that are more robust to spectral noise, and to select contiguous
regions of the spectra, which can be more easily interpreted in
terms of chemical composition (12).

The principal aim of this work is to test the feasibility of
using infrared spectra in the MIR region, to discriminate among
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flour samples of different cereals and pseudocereals, namely,
wheat, oats, and buckwheat, subjected to different technological
treatments, i.e., dehulling, toasting, and puffing. The use of oats
and buckwheat is currently limited to the production of low-
diffusion or niche foods. When compared to major cereals, such
as wheat, maize, and rice, these minor cereals are interesting
for their content of natural nutrients and biologically active
components. In fact, oats and buckwheat (a dicotyledonous crop
traditionally considered a cereal for the structural and chemical
features of seed) are rich in fiber and antioxidants, with positive
effects on the lipid and carbohydrate metabolism. These two
minor cereals also contain lysine-rich proteins, resulting in a
biological value similar to that of animal proteins. In the case
of oats, the lipid fraction is rich in unsaturated fatty acids. Only
limited information is available about the nutritional character-
istics and the functional/structural properties of the main
macromolecules in these cereals, in particular for what consti-
tutes the protein and the polysaccharide fractions (14). For these
reasons, we were interested in obtaining information on the
spectral regions that are responsible for classification.

Spectra were obtained in transmission mode, after inclusion
of a constant amount of flour sample in KBr pellets. PCA was
then used on the acquired spectra for explorative investigation,
and subsequently the WPTER algorithm was applied, to obtain
quantitative classification models and to locate the most
discriminant spectral regions. As it was already noted, this is a
preliminary study, our long-term interest being the characteriza-
tion of the technological properties of mixtures obtained by
blending the different kinds of flours, by using the same
methodological approach. A first step in this direction has been
made, by acquiring MIR spectra of wheat flour-based mixtures
containing increasing percentages of each of the other studied
flours, and analyzing the projection of these mixtures in the
space spanned by the principal components (PCs), calculated
by using the features selected according to the pure flours
classification model.

MATERIALS AND METHODS

Instrumentation. All spectra were collected in transmission mode
by using a Bruker IFS 113v FT-IR spectrometer, operating in the region
4000-500 cm-1, equipped with a sample wheel for the KBr pellets
and a TGS pyroelectric detector. All spectral measurements were made
at nominal 2 cm-1 resolution, with 32 interferograms co-added, zero-
filled to double the number of data points and then apodized with a
Blackmann-Harris three-term function before Fourier transformation.
The single-beam spectra of the samples were divided by single-beam
spectra of potassium bromide (reference) to yield transmission spectra.

Samples.Six pure flours of different cereals, namely, wheat, oats,
and buckwheat, subjected to different technological treatments, i.e.,
dehulling, toasting, and puffing, and 10 binary mixtures obtained by
blending the wheat flour with each of the other flours in varying
proportions, have been analyzed. Various heat-treatments were applied
to oats and buckwheat, to inactivate lipid-degrading enzymes, to develop
desirable flavors and to induce modifications to the native starch
structure that could be useful for product texturization. The toasting
treatment consisted of two following steps: a first treatment at 120°C
for 2 h 30min, and a second one at 1.3-1.4 atm and 110-115°C for
30 min. Then, the obtained toasted cereals were flaked, dried, and
cooled. The puffing treatment consisted of a drying step, to bring the
cereal at 6-8% final humidity values and, subsequently, of a treatment
performed in an expansion room at 9-15 atm and 200-220°C for
30-80 s. The description of the technological treatments applied to
the samples used, together with their codes, is reported inTable 1.

The pellets preparation procedure was optimized to obtain as much
as possible reproducible spectra, in terms of their superimposition.
Although this procedure is more laborious and time-consuming, analysis

time is still reasonable, and we achieved good intra- and interdays
reproducibility. Other sample preparation techniques and measuring
devices, such as DRIFT (1, 2), may be more advantageous, but this
study was essentially aimed at verifying if the information content of
the MIR region could be relevant for classification purposes, and
therefore the optimization of the acquisition technique will be object
of future work.

To gain the highest homogeneity in terms of particle size distribution,
all the flour samples, before inclusion in KBr, were milled with a Fritsch
Pulverizette 14 Variable Speed Rotor mill equipped with an 80µm
sieve. To decrease the uncertainty due to the pellets preparation, i.e.,
the error associated with the weighing procedure, for each flour a blend
was prepared by mixing it with potassium bromide, to obtain a quantity
10 times higher than the weight of a single pellet. Then, three pellets
for each flour sample were prepared by weighing the corresponding
aliquots of blend. To test the reproducibility of the pellets preparation,
and to minimize the influence of uncontrolled factors on the spectral
variability, each KBr/flour blend from the six pure flours was prepared
four times in different days. Therefore, on the whole (3 pellets)× (4
sessions)× (6 flours) ) 72 spectra were acquired. Of these, 48 (four
for each flour) were assigned to the training set and 24 (four for each
flour) to the test set, following a Latin square design. As far as the
flour mixtures are concerned, the blend with KBr of each flour mixture
was prepared twice in different days, and two pellets were made for
each KBr blend, for a total amount of (2 pellets)× (2 sessions)× (10
mixtures)) 40 spectra to be used as an external test set.

The KBr/flour ratio in the pellets was optimized, to achieve good
spectra reproducibility. The single pellet weight was 180 mg, and three
different amounts of included flour were tested: 0.6, 0.9, and 1.2 mg.
The spectra that were obtained showed the best reproducibility in
correspondence of the highest amount of flour, as can be seen inFigure
1.

Data Pretreatment. Before data analysis, each spectrum was
normalized by using the standard normal variate (SNV) procedure (15).
Before explorative PCA, the SNV normalized signals were mean
centered. At variance, in the case of the PCA on the wavelet coefficients
selected by WPTER, the data were autoscaled, because of the different
nature of the wavelet coefficients belonging to different basis vectors.

WPTER Algorithm. The WPTER algorithm is based on the wavelet
packet transform (WPT) (16), which is an extension of the discrete
wavelet transform (DWT). Wavelet transform theory and its applications
to chemistry have been recently reviewed in a dedicated book (13),
where references to the relevant literature may be found; here only
few concepts are briefly illustrated. As far as the WPTER algorithm is
concerned, a detailed description may be found in the original article
(12). In the present article, the WPTER algorithm is only schematically
summarized, i.e., not all the available options are described, but only
the used ones.

The decomposition of each signal in the WPT domain is obtained
by applying two filters, which correspond to a given wavelet: a low-
pass filter, which preserves the low-frequency content of the signal in

Table 1. List of the Sample Codes and Relative Descriptions

code sample

WF wheat flour
OF dehulled oats flour
TOF dehulled and toasted oats flour
POF dehulled and puffed oats flour
BF dehulled buckwheat flour
PBF dehulled and puffed buckwheat flour
MIX1 20% OF + 80% WF
MIX2 40% OF + 60% WF
MIX3 20% TOF + 80% WF
MIX4 40% TOF + 60% WF
MIX5 20% POF + 80% WF
MIX6 40% POF + 60% WF
MIX7 20% BF + 80% WF
MIX8 40% BF + 60% WF
MIX9 20% PBF + 80% WF
MIX10 40% PBF + 60% WF
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the so-called approximations vector, and a high-pass filter, which
maintains the high-frequency content in the details vector. This process
can be repeated in an iterative way forj decomposition levels by
applying the two filters both to the approximations and to the details
vectors, following a binary tree structure, like in a family tree. Each
decomposition level,j, is therefore formed byj approximations andj
details vectors, whose length is about halved with respect to the one
of the vectors of levelj-1. The maximum possible decomposition level
is the one formed by a number of (approximations+ details) vectors
corresponding to the power of two, which is equal to or immediately
lower than the length of the original signal. This decomposition allows
an efficient separation among the different frequencies constituting the
original signal, maintaining the local information. It has to be
emphasized that a perfect reconstruction of the original signal can be
made, by using all the possible combinations of (orthonormal) vectors,
in such a way that the whole binary tree is covered horizontally, without
any vertical overlap. The first step in WPTER is the WPT decomposi-
tion of the signals: given a matrix of size [m × n] composed bym

signals, each one formed byn points, a three-dimensional array [m ×
n × j] called WPMAT is obtained, which contains the projections of
all them considered signals into the wavelet packet domain. The level
j to which arrest the decomposition is chosen by the user. For the
reasons given above, WPMAT furnishes a redundant representation of
the original signal matrix, since different combinations of vectors, i.e.,
different bases, can be used for its representation. Therefore, the best
basis has to be selected, which in this case is the one leading to the
best discrimination among the signals belonging to different classes.
Before performing this operation, hard thresholding is made on every
approximations and details vector, by retaining only a fixed percentage
(user defined) of those wavelet coefficients showing the higher
discriminant capability, as evaluated by the between-class/within class
variance ratio. Then, the best basis selection is performed in WPTER
by using the classification ability (CA) criterion, which is based on
the estimation of the Euclidean distance between each couple of objects
(signals) in the thresholded wavelet coefficients space. CA is defined
as to attain low values in correspondence with the best separation among
the objects (spectra) belonging to different classes and, at the same
time, the best clustering among the objects belonging to the same class.
The best discriminant basis is therefore identified as the one containing
the approximations and details vectors attaining the lowest CA values.
The basis is not forced to be complete, since the goal is not the perfect
signal reconstruction, but the identification of those features, which
are important to the classification task.

Once the best classification ability basis (CAB) has been identified,
the wavelet coefficients therein contained can be used for signals
reconstruction and classification. Each signal is in fact reconstructed
back into the original domain by using only the previously selected
wavelet coefficients belonging to the CAB and setting to zero the others.
These reconstructed signals represent the projection of the selected
wavelet coefficients in the original domain, highlighting the signal
regions responsible for classification. The classification is then
performed using the percentage of assignation (PA), calculated for each
one of the reconstructed signals with respect to the mean reconstructed
signal of each class. The PA parameter assumes values varying in the
0-100 range, and it is defined according to the following: each one
of the p nonzero points of a given reconstructed signal lying in the
interval given by the value of the corresponding point in the mean
reconstructed signal of the considered class( twice its standard
deviation contributes with a value of 1/p %. Otherwise, if the considered
point does not lie in this interval, its contribution to the corresponding
PA value is null. In the ideal event in which every reconstructed signal
is assigned in all its points exclusively to the proper class, PA results
are equal to 100 for all the signals with respect to their own classes
and to 0 for all the signals with respect to the other classes. Obviously,
all the intermediate cases are possible. The PA values calculated for
each object with respect to each class are represented in a three-
dimensional bar graph.

The classification model created on the basis of the training set
signals can then be validated by applying it to a set of test signals.
Following the same procedure as for the training set, the test set signals
are first decomposed into the WPT domain, and then reconstructed
back into the original domain, using only the previously selected wavelet
coefficients belonging to the CAB. The reconstructed test set signals
are then evaluated with respect to the existing classes by using the PA
parameter.

Furthermore, for interpretative purposes, for each class the corre-
sponding mean original signal is plotted, highlighting the regions
corresponding to the selected features.

To find the optimal classification models, it is possible to vary
different parameters, such as the type of wavelet used for the WPT
decomposition, the maximum level of decomposition, and the percent-
age of coefficients retained in the thresholding operation. Therefore,
many cycles of calculation, corresponding to all the possible combina-
tions of the different parameters settings have to be performed. For
each cycle, the effectiveness of the classification is evaluated by means
of a score function (SF) based on the PA parameter. The results are
shown in score graphs reporting the SF values of each cycle of
calculation, where the most effective classification models are easily
identified as those giving the lowest values.

Figure 1. Spectra of pellets containing different amounts of flour (three
replicates for each composition): (a) ) 0.6 mg, (b) ) 0.9 mg, (c) ) 1.2
mg.
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In the present work, all the combinations resulting from the values
of the parameters listed below have been tested, leading to 300 cycles
of calculations. Twenty-five wavelets have been used, i.e., 10 daubechies
(db1, db2, db3, db4, db5, db6, db7, db8, db9, db10), 5 coiflets (coif1,
coif2, coif3, coif4, coif5), 5 symlets (sym4, sym5, sym6, sym7, sym8),
2 biorthogonal wavelets (bior2.4, bior4.4), and 3 reverse biorthogonal
wavelets (rbio3.1, rbio3.3, rbio3.9); two values of the maximum
decomposition level have been considered (5 and 7), and six percentage
values of wavelet coefficients to be retained after thresholding (0.1,
0.5, 1, 3, 5, and 10).

Software.WPTER has been written in MATLAB language and uses
some routines from the Wavelet Toolbox 2.1 for MATLAB (17). All
calculations were carried out using MATLAB 6.5. PCA was run using
the PLS Toolbox for MATLAB (18).

RESULTS AND DISCUSSION

Explorative PCA of the SNV normalized pure flours spectra
shows that the chemical information extracted from the MIR
spectra is potentially useful to discriminate the different cereal
flours. In fact, the scores plot of the first two PCs, reported in
Figure 2, shows a tendency of the six different kinds of flours
to cluster, even if there is a high degree of overlapping.

Therefore, to improve the separation and to classify quanti-
tatively the analyzed samples, the WPTER algorithm has been
used. The best 12 cycles, according to their lowest SF values,
have been analyzed in detail; good results were obtained for
most of them. Here, two of those best performing classification
models are presented, to point out the convergence of the results
toward chemically meaningful classification models. The first
considered cycle has been obtained by using a biorthogonal 2.4
wavelet, the maximum decomposition level equal to 7, and the
percentage of coefficients retained after thresholding equal to
0.5. Fifteen wavelet coefficients have been selected by WPTER
for this classification model.Figure 3a reports the mean original
signal of each class with the selected regions highlighted in dark
gray. Two spectral regions have been selected: the first one is
a narrow portion centered at about 2850 cm-1, and the second
one goes from 2200 to 1400 cm-1. The bands in these regions
have been recognized by other authors (19,20) as being typical
of lipid and protein components of flours. In particular, the thin
bands centered at 2850 cm-1 are attributed to symmetric
stretchingvibrational modes of the C-H bond in alkylic CH2

and CH3 groups, and are mainly due to lipids, as is also the
peak at 1745 cm-1. The two intense absorption bands that have
been selected at about 1650 and 1540 cm-1 may be attributed

to AMIDE I and AMIDE II, respectively. These two absorption
bands are associated with combinations of vibrational modes
of the amido groups of the amino acids in the proteic structures,
and are particularly important, since they reflect modifications
of the secondary protein structure (20).

The PA bar graphs for the training and for the test sets are
reported inFigure 4a,b, respectively. All the objects of the
training set are correctly assigned to the proper classes, with
the only exceptions of signal no. 16, which is assigned both to
its own class OF, and partly to class WF, and of signal no. 26,
which is only partly assigned to its own class POF. The class
assignment of the test set is also satisfactory, with the exception
of signal no. 8.

The second classification model that is reported has been
obtained by using a coiflet 3 wavelet, the maximum decomposi-
tion level equal to 7 and the percentage of coefficients retained
after thresholding equal to 0.5%. Ten wavelet coefficients have
been selected by WPTER for this classification model. The
selected regions, highlighted in light gray inFigure 3a, cover
the whole spectral range from 3000 to 500 cm-1. However,
looking at the corresponding reconstructed signal inFigure 3b,
it can be noticed that only two portions of this wavenumber
range, corresponding to those selected by the previous model,
differ significantly from zero. Hence, the two models bring the
same chemical information. The bar graph ofFigure 5a shows

Figure 2. Score plot of the first two PCs obtained by PCA of the MIR
spectra of the pure flours. The codes used are those given in Table 1.

Figure 3. Mean original signals for each class (a) the regions corre-
sponding to the selected features by WPTER classification model with
bior2.4 are highlighted in light gray, and the region corresponding to the
selected features by WPTER classification model with coif3 is highlighted
in dark gray. Mean reconstructed signals for each class (b) by WPTER
classification model with coif3.
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that the classification of the training set is analogous to the
previous one, while better results have been obtained for the
test set; in fact, all the test set signals have been correctly
classified (Figure 5b).

The effectiveness of the feature selection operated by WPTER
was further tested by applying PCA to the wavelet coefficients
selected by this classification model. InFigure 6, the different
pure flours are represented in the space of the first two PCs as
circles with different colors. From a comparison of this data
distribution with the one ofFigure 2, it is clear that feature
selection in the wavelet domain leads to a better discrimination
among the classes, without any overlapping.

Given the good performance of the classification models
obtained on the pure flours, we decided to test whether the
selected wavelet coefficients may contain useful information,
to distinguish mixtures composed by varying percentages of the
pure flours, as well. The MIR spectra of the mixtures reported
in Table 1 have been decomposed in the wavelet domain, and
the values of the previously selected wavelet coefficients have
been obtained. Then, the PC scores have been predicted by the
PCA model previously derived for the pure flours. As can be
seen in the score plot ofFigure 6, where the different symbols
indicate different percentage compositions, every mixture is
placed between the two pure flours from which it is made, and
as its composition in a given pure flour increases, its position
in the PC space moves toward the location where the pure
samples of the same flour are lying. This plot indicates that the
proposed method has discriminating capabilities both at qualita-
tive and at semiquantitative levels.

CONCLUSIONS

The results presented here suggest that the collected MIR
spectra contain useful chemical information for discriminating
different varieties of cereal flours subjected to different tech-

Figure 4. Percentage of assignation of the training (a) and of the test (b)
set signals, classified according to the WPTER model with a bior2.4
wavelet, maximum decomposition level ) 7, percentage of retained
coefficients ) 0.5.

Figure 5. Percentage of assignation of the training (a) and of the test (b)
set signals, classified according to the WPTER model with a coif3 wavelet,
maximum decomposition level ) 7, percentage of retained coefficients
) 0.5.

Figure 6. Scores plot of the first two PCs obtained by PCA of the wavelet
coefficients selected by the WPTER classification model with a coif3
wavelet, maximum decomposition level ) 7, percentage of retained
coefficients ) 0.5. Filled circles ) pure flours; plus signs ) mixtures
containing 80% WF; squares ) mixtures containing 60% WF. The markers
colors have been assigned as follows: dark blue for WF, green for OF,
cyan for TOF, magenta for POF, red for BF, and brown for PBF.

1066 J. Agric. Food Chem., Vol. 52, No. 5, 2004 Cocchi et al.



nological treatments. The WPTER classification results were
quite satisfactory both for the training and for the test sets.
Moreover, it is worth noticing that in the spectral regions
selected by WPTER are located absorption bands, which are
chemically meaningful for the studied matrix. In fact, the results
of the classification indicate variability in the proteic and lipidic
components of flours. This work highlights the usefulness of
the proposed approach to better understand and to characterize
the flour matrixes. In particular, these results are encouraging
in view of studying mixtures of the considered flours, to predict
their performances in dough and bread making processes.
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